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Abstract—The lifetime calculation of large dense sensor net-
works with fixed energy resources and the remaining residual
energy have shown that for a constant energy resource in a
sensor network the fault rate at the cluster head is network
size invariant when using the network layer with no MAC losses.
Even after increasing the battery capacities in the nodes the
total lifetime does not increase after a max limit of 8 times. As
this is a serious limitation lots of research has been done at
the MAC layer which allows to adapt to the specific connectivity,
traffic and channel polling needs for sensor networks. There have
been lots of MAC protocols which allow to control the channel
polling of new radios which are available to sensor nodes to
communicate. This further reduces the communication overhead
by idling and sleep scheduling thus extending the lifetime of the
monitoring application. We address the two issues which effects
the distributed characteristics and performance of connected
MAC nodes. (1) To determine the theoretical minimum rate
based on joint coding for a correlated data source at the single-
hop, (2a) to estimate cluster head errors using Bayesian rule for
routing using persistence clustering when node densities are the
same and stored using prior probability at the network layer,
(2b) to estimate the upper bound of routing errors when using
passive clustering were the node densities at the multi-hop MACS
are unknown and not stored at the multi-hop nodes a priori.
In this paper we evaluate many MAC based sensor network
protocols and study the effects on sensor network lifetime. A
renewable energy MAC routing protocol is designed when the
probabilities of active nodes are not known a priori. From
theoretical derivations we show that for a Bayesian rule with
known class densities of ω1, ω2 with expected error P ∗ is
bounded by max error rate of P = 2P ∗ for single-hop. We
study the effects of energy losses using cross-layer simulation
of large sensor network MACS setup, the error rate which
effect finding sufficient node densities to have reliable multi-hop
communications due to unknown node densities. The simulation
results show that even though the lifetime is comparable the
expected Bayesian posterior probability error bound is close or
higher than P ≥ 2P ∗.

Index Terms—Sensor Data Reliability, Baysian Error Classi-
fiers, Slepian & Wolf Coding, Cosets.

I. INTRODUCTION

Sensor networks are deployed in a dense configuration due
to its limited radio range and fixed non renewable energy

resources due to computational/networking characteristics of
sensor networks. To collaboratively use the limited resources
distributed algorithms, select a single node which transmits
serially using its UART pre-processed sensed data information
using many local resources. As the cost of radio transmission
is much more than local sensing, the sensor network uses two
different topologies to address the energy cost at the cross-
layer stack. The network layers uses the upper layers assuming
MAC layer abstraction to optimally pick cluster heads by using
a fixed probability density function (pdf) of a network resource
at the node, such as, remaining battery energy. This type of pdf
is power-aware as it uses a collaborative function to minimize
over use of network resources thus avoiding pre-mature node
failures.
The MAC layer uses a k-neighborhood distance algorithm
to find other nodes within its own limited range and uses
a multi-hop schedule to the specific data transmitting node.
This scheduling allows multi-hop nodes to use sleep cycles
and lower their energy consumption while idling. These multi-
hop algorithms use low-power listening and use a preamble to
wake up nodes, sleep cycles when the transmitter is completely
off and traffic based preamble to synchronize nodes to receive
the data payload.
If θ1, θ2, θ3 are the data values of a parameter such as
residual energy, observed values by the sensors, as large scale
sensor deployment are a dense deployment as the reading are
correlated only an average θ1 needs to be transmitted. As the
clustering is based on the network layer which optimizes on ra-
dio range and not the sensing region it always is approximated
and corrected using some training samples using less number
of bits to be transmitted, this is the fundamental design based
on power-aware data model. In the MAC layer which polls the
channel to check for any activity while receiving and during
transmitting to avoid collision and uses best effort QoS for the
messages to be forwarded. The data sensing nodes are single
hop while the forwarding nodes are multi-hop nodes. The data
values which are forwarded are discrete and updated according
to some trend in the data. Some measured values may be
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(a) Persistence clustering when CH probabilities are known a priori (b) Passive clustering when CH probabilities are unknown (c) Error Bounds of persistence & passive clustering

Fig. 1. Estimation of CH selection error and MAC layer routing using Bayesian distributed rule

changing more quickly than others creating different traffic
patterns that are data driven. The multi-hop nodes do not have
any sensors and act like routers which uses best effort QoS and
constantly adapts its polling depending on the data trend, this
is fundamental to the design of polling the channel which uses
on-demand traffic predictions. Model implementation assumes
θ1, θ2, θ3 are always transmitted when changes happen and
typically it is re-transmitted at a constant rate of 10 minute
intervals keeping the channel polling of a set of nodes to
guarantee the QoS.
Figures 1(a,b) illustrates the Bayesian classifier for pdf based
clustering and multi-hop based passive clustering. For the
theoretical and mathematical proofs please refer to chapter
2,4 in the mentioned reference [6]. This paper builds from
previous work [2] and extends the two dimensional Bayesian
model [6] to optimize on power-aware routing algorithms
in representing sensor network. The routing algorithms are
implemented at the network layer which have known density
of nodes by using prior selection and at MAC layer which
have unknown node densities due to limited transmission
range. The Bayesian classifiers [6] which are specific to the
routing topology uses features to maximize the lifetime of the
sensor network and minimize on sensor faults. This Bayesian
classifier helps in predicting the theoretical fault rate bounds
by knowing the node densities validated also through real
simulation. In section II, the sensor data model is described
with respect to sampling and compression needs at the cluster
heads. In section III, the Source coding rate is introduced for
correlated sources using error corrected codes. In section IV,
the scalability of the sensor network is modeled using Power
Law and Bayseian Classifier and how it effects distributed
clustering and passive clustering routing. In Section V, a
distributed algorithm is simulated without MAC to find error
bounds for a large-scale deployment. Section VI, uses cross-
layer energy model with a standard simulator using crossbow
mote energy model to analyze lifetime for various routing
algorithms with MAC and data link losses. The summary
of results take into consideration protocol performance for
a fixed battery model and its implications to MACS which
use renewable energies. The corresponding routing errors with
same node densities are bounded by the theorems discussed
in Fault rates, and summarized in a table(figure V).

II. DATA MODELS

A. Probability model

Where d is the distance to transmit between sensors i to
sensor j. We designed the compression algorithm for a large
distributed sensor network with a desired channel rate, a fixed
length code to represent real sensed values at the encoder using
(c,k,d), Where c is the code, k is the length and d is the
distance from the average PMax cluster heads. This technique
which allow using less number of bits to represent the newly
encoded data is sent to the decoder by sharing the expected
local value at both ends. As a rule, compression algorithms use
a probability model based on the entropy of the source. Iyengar
[2] defined a Bayesian fault-tolerant algorithm [2] in sensor
network using an abstract sensor which can be tamely faulty
and widely faulty. For larger sensor network deployment, this
model helps predict the error bounds in terms of the varying
sensing values. In this paper we adapt the Bayesian rule [6] to
select cluster heads for known node density and extend it to
find the upper bounds related to unknown densities for solving
the optimal routing problem at the network layer in sensor
networks. The latter is more relevant for renewable energy
resources [3]. Where the number of active sensors connected
to the network is not known, at any given time.
Entropy of general sensing source is a sequence of length n
from the source and is given by

H(S) = lim
n→∞

1
n

Gn, where (2.1)

Gn = −
∑∑

...
∑

P (X1 = i1, X2 = i2...Xn = in)

log P (X1 = i1, X2 = i2...Xn = in)

In sensors where each element in the sequence is independent
and identically distributed (i.i.d.), with this statistical model,
we can modify the entropy of the first order to equation (2.1)

H(S) = −
∑

P (X1) log P (X1) (2.2)

B. Aggregation model

If the cluster size in n, given this density of clustering, the
entropy of data aggregation[8] from equation 2.2. In a lossless
mode if there are no faults in the sensor network, we can show
that the highest probability given by PMax is ambiguous if its
frequency is ≤ n

2 otherwise it can be determined by a local
function.
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(a) Distributed sensor networks were ω1 = ω2 (b) Passive Clustering were ω1 �= ω2

Fig. 2. (a) Distributed sensor networks with LEACH single-hop nodes (b) Passive clustering algorithms with multi-hop nodes

C. Local Pmax functions

Provides a way to determine the local filter value from the
probability distribution used by compression algorithms.

|Pmax| =
{

local, for Pmax ≥ n
2 (2.3a)

global, for Pmax < n
2 (2.3b)

D. Slepian & Wolf theorem

The Slepian-Wolf rate [10] region for two arbitrarily corre-
lated sources x and y is bounded by the following inequalities,
this theorem can be adapted using equation (2.2)

Rx ≥ H

(
x

y

)
, Ry ≥ H

(y

x

)
and Rx + Ry ≥ H (x, y)

(2.4)
If the correlated sources are differing by a few bits, the
possible number of codewords can be represented as 2m where
m= no. faulty bits [9]. In our case m=2 as the parameters are
distributed whilst collected locally at the cluster head.

III. COMPRESSION RATE

A. Distributed source coding with side information

In sensors networks several measured values are sensed in
a distributed manner and these are aggregated according to
the users query. The goal of all the encoder is analogous to
the previous section where it uses cosets. Equations (3.1-3.4)
illustrates the bin formation to reduce the overall bits needed
for transmission. Considering the case of distributed sensing
application, the encoder is further designed with a machine
learnable redundancy range which is specific to each and
every application. This mutually redundant measured range
is correlated with sensors which are in the same wireless
range and connected to a parent. This information, also called
side information is shared with the decoder. Owing to side
information, even lesser number of bits are needed to rep-
resent the changing values coming from each cluster heads
transmitting to the joint decoder. Encoder and decoder have
access to the side information Y. which is correlated to X

and can be represented by the equation 2.3(a,b). According
to the Slepian-Wolf Theorem [10], established in 1971, that
the number of bits needed by using the theorem is lesser, as
shown in figure 4(b), than the total entropy for both the two
arbitrarily correlated sources H(x), H(y).

1 1 1
0 0 0

= 00 (3.1)

0 1 0
1 0 1

= 10 (3.2)

0 0 1
1 1 0

= 01 (3.3)

0 1 1
1 0 0

= 11 (3.4)

IV. FAULT RATE

Large deployment of sensor network that use an efficient
distributed algorithm to select cluster heads which allows to
extend the lifetime [4] to function without faults. The fault
rate of such an algorithm can be defined as the residual
percentage of good sensor when the network incurs faults due
to resource drain. This is typically referred to as the sensor
networks residual energy, if the fault rate is higher the cluster
head selection algorithm is less optimal. The two dimensional
simulation model is expressed in figure 2 for distributed and
passive cluster based routing. In the paper the fault rate is
measured for both the cases for algorithm complexity, multi-
hop dependency, MAC layer losses and Bit error rates.

A. Estimate of the sensed value for known densities

Theorem IV.1 A power law is any polynomial relationship
that exhibits the property of scale invariance. The most com-
mon power laws relate two variables and have the form.
PowerLaw = f(x) = ax2 + o(x)2

Proof: The function f(x) is represented as function of
transmission distance from the cluster heads to a sink location,
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Randomized CH Selection Scheme
Generate a random number x ∈ (0, %CHs)

Calculate gi(x) = P (ωi‖x) = p(x‖ωi)P (ωi)∑
p(x‖ωj)P (ωj)

if x = rand(x)

if x ≤ %then CHi = x, else CHi = false
Threshold CH Selection Scheme

Obtain the sensors residual energy Sj for all Ni neighbors of node i
Calculate if θ ≤ Sj

gi(x) = P (ωi‖x) = p(x‖ωi)P (ωi)∑
p(x‖ωj)P (ωj)

if x ≤ θ

ifx ≥ θ then CHi = x, else CHi = false
Optimal Zone based caching Scheme
Divide the sensors into three zones

Use the middle zone as CHs caching
Calculate gi(x) = P (ωi‖x) = p(x‖ωi)P (ωi)∑

p(x‖ωj)P (ωj)
if x = Constant

Use optimal settings from the above two cases for % of CHs with use count

Fig. 3. Cluster head selection for power-aware routing in large sensor networks

f(d), where d is the distance to transmit between sensors i to
a multihop sensor j towards the sink in increasing distance,
from this we get the Power rule [4] based on the distance
d of nearest sensor to the farthest away sensor, substituting
in the above theorem IV.1 and summing up the total energy
required for all transmissions within one meter, two meters,
three meters, four meters and extending up to (d − 1) meters
to a progressive sequence in equation (4.1).

PowerLaw = 12 + 22 + 32 + 42 + ... + (d− 1)2 + d2 (4.1)

To sum up the total energy consumption we can write it in the
form of Power Law equation (4.1.1)

PowerLaw = f(x) = ax2 + o(x)2 (4.1.1)

Substituting d-distance for x and k number of bits transmitted,
we equate as in equation (4.1.1).

PowerLaw = f(d) = kd2 + o(d)2 (4.1.2)

o(d)2 is an asymptotically small function of d, Taking Log
both sides of equation (4.1.2),

log(f(d)) = 2 log d + log k (4.1.3)

Notice that the expression in equation (4.1.2) has the form
of a linear relationship with slope k, and scaling the argument
induces a linear shift of the function, and leaves both the form
and slope k unchanged. Plotting to the log scale.

Theorem IV.2 Properties of power laws - Scale invariance:
The main property of power laws that makes them interesting
is their scale invariance. Given a relation f(x) = axk or,
indeed any homogeneous polynomial, scaling the argument x
by a constant factor causes only a proportionate scaling of
the function itself. From the equation (4.2.1) we can infer that
the property is scale invariant even with clustering c nodes in
a given radius k.

Proof:
f(d) = kd2 + o(d2) (4.2)

f(cd) = k(cd2) = ckf(d)αf(d) (4.2.1)

From the equation (4.2.1) we can infer that the property is
scale invariant even with clustering c nodes in a given radius
k. This is validated from the simulation results [5] obtained
in Fig 4 (a) which show optimal results(minimum loading per
node[5]) when clustering is ≤ 20% as expected in theorem 1.
It is true, however, that the sensor.

Theorem IV.3 Theorem 3. CH Error Rate - Local: If
two classes have the same covariance, where p(x|wj) ≈
N(μ, Σ), j = 1, 2.

If prior probabilities are equal, the Bayes model minimizes
according to the input distribution and the error rate is given
by

P (e) =
1√
[2π]

∫ ∞

r/2

e−u2/2du (4.3.1)

Proof: The simulated algorithms such LEACH use the
knowledge that the nodes which are sensing are correlated and
have known densities such as cluster size and radio range. The
sensed values are i.i.d distributed and their variance �= 0. The
underlying model can use the error rate for a cluster as 1

c and
estimated value θ which is random value of the nodes residual
power in this model and is defined by

r2 =
∫ d

i=1

(
μ − μ

σi

)2

(4.3.2)

where r2 is the radio range between nodes calculated by using
Mahalanobis distance [6].

Theorem IV.4 Theorem 4. Multi-hop Error rate - Global:
When P (ωm|x) is close to unity, the nearest-neighbor selec-
tion is almost always the same as Bayes selection. This is,
when the minimum probability of error is small close to 1/c,
so that all classes are essentially equally likely, the selection
made by the nearest-neighbor rule and the Bayes rule are
rarely the same, but the probability of error is approximately
1 − 1/c for both and is bounded by.
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(a) Fault rate for LEACH lifetime (b) Sensor data fault-redundancy (c) Lifetime Data faults with protocol communications (d) Lifetime Data faults with MAC losses

Fig. 4. Simulation results of fault analysis of WSN routing and data aggregation[8] algorithms

P ≤ 2P ∗ (4.4)

Proof: We recall that the Bayes decision rule minimizes
P (e) by minimizing P (e‖x) for every x. If P ∗(e‖x) be the
minimum possible value of P (e‖x), and P ∗ be the minimum
possible value of P (e), then

P ∗(e) = 1 − P (ωm|x) (4.4.1)

and from the previous theorem

P ∗ =
∫

P ∗(e|x)p(x)dx (4.4.2)

P ≤ 2P ∗ (4.4.3)

. Convergence of the Nearest Neighbor.

V. ANALYSIS OF FAULT RATE CH-ALGORITHMS

A. Estimate of the sensed value for known densities

The simulated routing algorithms such LEACH-S [7],
LEACH-E [5] and CRF [5] as described in the above table use
the knowledge that the nodes which are sensing are correlated
and have known densities such as cluster size and radio range.
The sensed values are i.i.d distributed and their variance �= 0.
The underlying model uses different ways to select the cluster
heads to minimize the error rate. When the sensor faults
happen due to fixed energy resources at the cluster head the
total energy unused at the end of its lifetime is the residual
rate[1], the routing algorithms tries to minimize this error
criteria. As this model uses the network layer as shown in
figure (2a) and the only dependant variable is the fixed lifetime
model [4]. The complexity of the algorithm can be defined by
using the standard implementation of the LEACH distributed
algorithm and its power-aware variations, see table (figure 3).

©g(x) = f(x) : 0 ≤ f(x) ≤ cg(x) (5.1)

Ωg(x) = f(x) : 0 ≤ cg(x) ≤ f(x) (5.2)

Θg(x) = f(x) : 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) (5.3)

Complexity of the routing algorithms for LEACH is shown
in equation (5.1), LEACH-E equation (5.2) and CRF equation
(5.3). In the next section we will use only the lower layer
such as power-ware MAC and estimate the multi-hop routing
errors. In this case the model is not dependant on the fixed

energy resources and only dependant on k-neighborhood rule
it uses to find its multi-hop nodes as shown in figure (2b). As
the node probability are not known a priori the error rates are
much higher than the persistence clustering.

VI. SIMULATION

A. Results from the network layer

Simulation models large number of nodes and calculates the
lifetime when sensor faults are more likely to happen, the table
shows number of cluster heads and the fault rate for distributed
clustering and passive clustering in figure 4. Simulation results
confirms the fault rate is network size invariant and converges
to the optimal values derived in theorem 1 and 2.

TABLE I
SUMMARY OF NOTATIONS FOR ANALYSIS OF ROUTING FAULT-RATE

Symbols Definition
N Total number of deployed nodes
n Number of nodes in the cluster
μ Density of the class

PMAX Bayesian class rule
Rx,Ry Entropy of correlated sources

R,r Radio Range
P K-neighborhood fault probability
P* Bayesian probability
ω Bayesian classes
S Data source node
D Destination node
θ Nodes residual energy

CH Cluster head
P (ωi‖x) Conditional probability
P (x‖ωi) Class conditional probability

B. Results from the MAC layer

When node densities are not know in advance due to node
failures or unscheduled polling and other characteristics of
sensor due to its dependence in fixed resources. The problem
due to this is for data transmitting nodes needs to find a near
neighbor in a deterministic way by which it can build a passive
cluster to multi-hop its data. This uses minimal clustering over-
head as it does not use the upper layers during communication
synchronization. The behavior of the k-Nearest-Neighbor rule
[6] will be directed by in our simulation a two-dimensional
node distribution of n ≥ 100 where node density has one
or less neighbors. The unconditional average probability of
error occurring will be found over all nodes positioned at
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LEACH 0.27% 0.41% 2m where m=2 faulty bits SPEED-CSMA 0.3% 0.1% BER, GlomoSIM radio
Fixed Energy ω ≤ 20% P = 2P∗ Optimal config, Theorem 1,2 SPEED-BMAC 0.1% 0.1% BER, GlomoSIM radio

Node failures(renewable lifetime) x P ≤ 2P∗ Errors due to unbalanced nodes Renewable Energy Model x P ≥ 2P∗ Node failures. Theorem 3,4
Channel Error Model P = P∗ P ≥ 2P∗ Link errors. Theorem 3,4

Fig. 5. Simulation test-bed for power-aware lifetime models

coordinates specified by x:

P ∗(e) =
∫

P (e|x)p(x)dx (6.1)

The convergence of the nearest neighbor for distributed clus-
tering and passive clustering are derived, the distributed clus-
tering case is

P = P ∗ (6.2)

For passive clustering is given by

P = 2P ∗ (6.3)

As shown in figure 2(a) where lower bound for LEACH-
S when it becomes faulty and the remaining residual energy
using the cross-layer simulator is P(e)=0.27% which is the
fault rate. In the case of passive clustering when node density
p=0.1 or using the k-neighborhood rule as shown in 2(b)
the node densities are unknown in this case due to high
likely-hood of faults. The protocol simulation results are show
in table (figure 5) that the upper bound has error rate of
P(e)=0.41% which converges to the proof derived in theorem
3 and theorem 4 and the upper bound in figure 1(c), chapter
4 on non parametric techniques [6].

C. Results from the MAC layer using a propagation model

In the previous case MAC abstraction is used which does
not take into account the propagation losses and protocol
retries at the MAC level. To simulate the wireless channel
we use GlomoSIM [3] bit error rate(BER) simulator and
implement the routing algorithms for multi-hop cases. The
routing algorithm implemented is SPEED which as shown in
table (figure 5) is a geographic routing algorithm which uses
two dimensional coordinate space to calculate the path from
the node coordinates. Many runs into the protocol simulation
suggest that the radio characterization for CSMA [3] and B-
MAC are comparable, figure 4(c) when the node densities
are known. The radio characterization for CSMA [3] is prone
to faults when compared to B-MAC, figure 4(d) when using
in multi-hop modes where the node densities are unknown.
The protocol performance results show that the data packets
received during useful lifetime is 3X times better in B-MAC
when compared to CSMA and error rates are P ≥ 2P ∗ higher
than the theoretical Bayesian limit [6] of P = 2P ∗ as derived
in theorem 3 and theorem 4.

VII. CONCLUSION

In this paper we study Bayesian model to predict the
theoretical bounds and compares with real simulations of
cross-layer and protocol implementations using power-ware
MACS. To have a reliable sensor network for MAC’s using
renewable energy resources, from the simulation results, the
implemented protocols adapts well for denser configuration as
the base configuration has errors greater than the theoretical
limits.
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